Article 5421

Title of the article

Study of diffraction efficiency of diffraction gratings by the modified method of variables separation 

Authors

Yuriy G. Smirnov, Doctor of physical and mathematical sciences, professor, head of the sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru
Valeriya Yu. Martynova, Senior lecturer of the sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), 79273698109@ya.ru
Marina A. Moskaleva, Candidate of physical and mathematical sciences, associate professor of the sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street,  Penza, Russia), mmm@pnzgu.ru
Aleksey A. Tsupak, Candidate of physical and mathematical sciences, associate professor, associate professor of the sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), altsupak@yandex.ru

Index UDK

517.958:535.4 

DOI

10.21685/2072-3040-2021-4-5 

Abstract

Background. The purpose of this work is to study the electromagnetic wave diffraction by cylindrical diffraction gratings. Material and methods. The problem is solved using the modified method of separation of variables. Results. The modified method of separation of variables was implemented, several computational experiments were performed to confirm the convergence of the method; the modified method was compared with the plane wave expansion method. Conclusions. The numerical results are consistent with well-known theoretical results as well as with several numerical results obtained using other methods. The described method is an efficient technique for solving problems of modeling complicated multilayer dielectric gratings. 

Key words

diffraction gratings, modified method of separation of variables, electromagnetic TE-waves , diffraction efficiency 

 Download PDF
References

1. Britten J.A., Molander W.A., Komashko A.M., Barty C.P. Multilayer dielectric gratings for petawatt-class laser systems. Proc. SPIE 5273, Laser-Induced Damage in Optical Materials: 2003. 2004;5273:1–7. Available at: https://doi.org/10.1117/12.524015
2. Nguyen H.T., Britten J.A., Carlson T.C., Nissen J.D. [et al.]. Gratings for high-energy petawatt-class lasers. Proc. SPIE 5991, Laser-Induced Damage in Optical Materials: 2005. 2005;5991(59911M):1–8. Available at: https://doi.org/10.1117/12.633689
3. Bonod N., N´eauport J. Diffraction gratings: from principles to applications in highintensity lasers. Advances in Optics and Photonics. 2016;8(1):156–199. Available at:
https://doi.org/10.1364/AOP.8.000156
4. Beier F., Hupel C., Nold J. [et al.]. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier. Optics Express. 2016;24(6):6011–6020. Available at: https://doi.org/10.1364/OE.24.006011
5. Dawson J.W., Messerly M.J., Beach R.J. [et al.]. Analysis of the scalability of diffraction- limited fiber lasers and amplifiers to high average power. Optics express.
2008;16(17):13240–13266. Available at: https://doi.org/10.1364/OE.16.013240 
6. Guan H., Jin Y., Liu S. [et al.]. Broadband trapeziform multilayer dielectric grating for femtosecond pulse compressor: design, fabrication, and analysis. Laser Physics.
2013;23(11):1–9. Available at: https://iopscience.iop.org/article/10.1088/1054-660X/23/ 11/115301
7. Oliver J.B., Kessler T.J., Huang H. [et al.]. Thin-film design for multilayer diffraction gratings. Proc. SPIE 5991, Laser-Induced Damage in Optical Materials: 2005.
2006;5991:1–7. Available at: https://doi.org/10.1117/12.638818
8. Moharam M.G., Grann E.B., Pommet D.A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A. 1995;12(5):1068–1077.
9. Quan L., Yunxia J., Jianhong W., Peiliang G. Fabrication of the polarization independent spectral beam combining grating. Proc. SPIE 10255, Selected Papers of the Chinese Society for Optical Engineering Conferences held October and November 2016. 2017;1025514:1–7. Available at: https://doi.org/10.1117/12.2266500
10. Junming C., Yunxia J., Jianda S. Design of broadband polarization-independent multilayer dielectric grating. Proc. SPIE 10339, Pacific Rim Laser Damage 2017: Optical Materials for High-Power Lasers. 2017;1033911:1–5. Available at: https://doi.org/ 10.1117/12.2269729
11. He T., Zhang J., Jiao H., Wang Z., Cheng X. Near-infrared broadband Si:H/SiO2 multilayer gratings with high tolerance to fabrication errors. Nanotechnology. 2020;31(31):1–
7. Available at: https://iopscience.iop.org/article/10.1088/1361-6528/ab8768 12. Inki Kim [et al.]. Optical characterizations and thermal analyses of HfO2/SiO2 multilayered diffraction gratings for high-power continuous wave laser. Journal of Physics Photonics. 2020;2(2):1–10. Available at: https://iopscience.iop.org/article/10.1088/ 2515-7647/ab7b0f
13. Available at: www.gsolver.com.
14. Available at: www.lighttrans.com.
15. Shestopalov V.P., Kirilenko A.A., Masalov S.A., Sirenko Yu.K. Rezonansnoe rasseyanie voln. T. 1. Difraktsionnye reshetki = Resonant scattering of waves. Volume 1. Diffraction gratings. Kiev: Naukova dumka, 1986.
16. Popov E. Gratings: Theory and Numeric Applications, Second Revisited Edition. Institut Fresnel, AMU, CNRS, ECM, 2014.
17. Tsupak A.A. Analysis of the diffraction efficiency of a one-dimensional periodic diffraction grating by the plane wave method (case of TE polarization). Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki = University proceedings. Volga region. Physical and mathematical sciences. 2020;(3):3–14. (In Russ.). doi:10.21685/2072-3040-2020-3-1

 

Дата создания: 19.01.2022 11:14
Дата обновления: 19.01.2022 13:42